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A B S T R A C T

The purpose was to examine the relationship between the rate of neural excitation (rate of rise in the electro-
myogram, EMG) and the rate of isometric force development (RFD) to determine whether surface EMG measures
can detect nonlinearity that is expected due to underlying motor unit discharge behavior and the summation of
progressively larger motor unit potentials throughout recruitment. Due to interest in obtaining a change point, a
bilinear model was hypothesized to provide the best fit of the EMG-RFD relationship compared to a linear model,
exponential model and log-transformed data. 21 young adult participants performed isometric dorsiflexion
contractions to 40% of their maximal voluntary contraction (MVC) force. Contractions were performed in RFD
conditions ranging from slow (20 %MVC/s) to fast (peak volitional rate). The Akaike Information Criterion
supported nonlinear best fit models in 16 of the 21 participants with the greatest overall support for the bilinear
model (n= 13). The bilinear models indicated a mean change point at 204%MVC/s. The present data do not
identify the specific motor unit control mechanisms at play and the influence of amplitude cancellation on the
electromyogram must be carefully considered.

1. Introduction

Examining the relationship between neuromuscular excitation (NE)
and force production provides a means to study topics such as impaired
motor control (Chou et al., 2013; Jahanmiri-Nezhad et al., 2014; Ng
et al., 1997), the effects of exercise training (Van Cutsem et al., 1998)
and neuromuscular efficiency (Paquin and Power, 2018). In some in-
stances, physical function is predicted more strongly by the rate of force
development (RFD) than the peak force achieved (Bento et al., 2010;
Hazell et al., 2007). NE primarily determines RFD (Maffiuletti et al.,
2016), and is quantifiable using electromyography (EMG). EMG re-
presents the electrical sum of active motor units (Robertson et al., 2004)
and is primarily determined by motor unit (MU) recruitment and rate
coding mechanisms of force control (Kamen and Gabriel, 2010). While
one must not over-interpret measures from surface EMG with respect to
MU behavior, some recognize that nonlinearities in the EMG-force re-
lationship may reflect “different motor unit pool activation strategies”
and have demonstrated that parameters from a bilinear fit of the EMG-
force relationship can be sensitive to experimental manipulations such
as contraction history (Paquin and Power, 2018).

At the MU level, the relationship between the rate of increase in
current applied to the motoneuron and RFD is linear (Baldissera and

Campadelli, 1977). This linearity is due to bilinear firing behavior of
the alpha motor neuron offsetting the nonlinear input-output transform
of muscle which mimics a low-pass filter (Baldissera et al., 1998;
Partridge, 1965). The bilinear relationship between input to the motor
neuron and its response (i.e. firing rate) includes a primary range of
firing rates typically observed during slow contractions and a secondary
range of firing rates observed during rapid contractions or movements
(e.g. Harwood et al., 2011; Kernell, 1965b). The two linear ranges in-
tersect at a change point and the secondary range has a greater slope.
Feline studies have demonstrated that both rapid muscle contractions
from rest and higher frequency sinusoidal force modulations depend on
brief instances of secondary range MU discharge rates (Baldissera et al.,
1998) and the bilinear relationship between movement velocity and
MU firing rates has been successfully documented in humans (Harwood
et al., 2011).

The dynamics of MU recruitment may also contribute to possible
nonlinearity in the NE-EMG relationship since higher threshold MUs
have greater electrophysiological sizes (Masakado et al., 1994) and are
more likely to be recruited earlier in a contraction as RFD increases
(Desmedt and Godaux, 1977; Yoneda et al., 1986). In slow muscle
contractions, the greatest NE occurs close to peak force, whereas during
fast muscle contractions the greatest NE occurs closer to force onset
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(Ricard et al., 2005). Thus, bilinearity in rate coding and the nonlinear
summation of progressively larger MU action potentials are both con-
sidered as the basis of the present hypothesis that a bilinear relationship
between neural excitation and RFD can be observed with surface EMG
measures. A more complete understanding of this relationship will
benefit applications of electromyography to the study of neuromuscular
function during rapid movements in health, pathology, and perfor-
mance.

2. Methods

2.1. Participants

Twenty-one healthy young adults, ten females and eleven males,
(mean ± SD: age=21.7 ± 2.7 years, body mass= 73.6 ± 20.2 kg,
height= 1.7 ± 0.1m, maximal grip strength=39.5 ± 10.2 kg) par-
ticipated in this study. Nine participants self-reported as consistently
participating in high-intensity physical activity for at least the previous
six months. All participants were university students and free of neu-
rological impairment, lower body dysfunction, and recent (< 6months)
lower extremity injuries. All participants signed a university approved
informed consent before beginning the study.

2.2. Procedures

EMG and isometric force recordings were obtained during a single
testing session. Participants were seated on a custom wooden bench
with the left foot fastened with an inelastic strap to a plate affixed to a
strain gauge force transducer (Model SM-100, Interface Force Inc.,
Scottsdale, AZ). Force was amplified and low-pass filtered at 50 Hz at
the time of recording (Model SGA, Interface force Inc., Scottsdale, AZ).
The skin above the belly of the tibialis anterior muscle was shaved,
abraded, and cleansed with ethyl alcohol. A pre-amplified double dif-
ferential surface electrode was secured to skin above the mid-belly re-
gion of the tibialis anterior muscle (MA-300, Motion Lab Systems,
Baton Rouge, LA). The surface electrodes were 12mm diameter medical
grade stainless steel disks with a 17mm inter-electrode distance. A
13x3 mm reference bar separated the sensors and a ground electrode
was placed on the lateral malleolus. Amplification ranged from 2000 to
5700. Input impedance for this system is > 100MΩ with a common
mode rejection ratio > 100 dB at 65 Hz and noise < 1.2 uV RMS.
Signals were digitized at 2 kHz with 24-bit resolution (cDAQ-9178,
module NI9239, National Instruments, Austin TX). DASYLab v.13
(National Instruments, Austin, TX) was used to control data acquisition
and to provide real-time force biofeedback.

2.3. Experimental conditions

Participants performed three maximum voluntary isometric con-
tractions (MVCs) with the maximum force achieved used to present
relative force levels (%MVC) in visual feedback. Participants were
asked to produce force to match static plots of different linear ramp
force-time curves (Fig. 1). There were five different ramp force RFD
conditions (20 %MVC/s, 40 %MVC/s, 80 %MVC/s, 160 %MVC/s, and
200 %MVC/s) and one condition of rapid force pulses. All conditions
were performed to 40 %MVC. Each condition was practiced and per-
formed for multiple trials. Each ramp force within a trial was separated
by 2 s and rapid pulses by 1 s. Each trial contained six ramps with one
minute of rest between recordings. With feedback based on visual in-
spection by the investigator, participants practiced each RFD ramp
condition until five ramps of adequate performance were obtained. To
reduce order effects, the ramp conditions were counterbalanced across
participants followed by two trials of rapid force pulses. After the
conservative exclusion of contractions that exhibited poor performance
(typically excessive RFD at the onset of a ramp, large corrections during
a ramp, or poor amplitude control in pulses) an average of 57

contractions were analyzed in each individual.

2.4. Signal processing

Force and EMG data were processed using LabVIEW v. 2014
(National Instruments, Austin, TX). All values derived from the force-
time curve were normalized to MVC force. An RFD time series was
calculated from the force-time curve as the slope from a linear fit line of
all data points within a .1s moving window (±0.05 s around each data
point). After adjusting for gain, removing DC offset, and bandpass fil-
tering between 10 and 990 Hz, the EMG was absolute value rectified.
Based on recent work involving EMG and rapid contractions, peak rate
of EMG rise (RER) was selected to quantify NE because it had the
greatest correlation with RFD among measures that do not require the
determination of EMG onset, which would have been impractical and
highly variable in the slowest RFD conditions (Josephson and Knight,
2018). Using the same .1s window size as RFD computation, RER was
calculated as the slope of the rectified, filtered (zero-lag 4th order low-
pass Butterworth, 20 Hz cutoff) electromyogram. The EMG recordings
were normalized to the RMS amplitude of EMG in the maximal MVC
trial (± 0.250 s window surrounding MVC) which was filtered simi-
larly.

2.5. Model selection

Based on the evidence of bilinearity in neuromuscular function cited
above and with interest in observing a potential change point, a strict
bilinear model of the data was our primary model of interest. Two other
models were tested using guidance from research on blood lactate
concentration curves. Beaver et al. (1985) determined that the best
bilinear fit for this relationship is achieved with a log-log transforma-
tion. Later researchers suggested that exponential model was most re-
presentative of the underlying physiology (Hughson et al., 1987). A
linear relationship between surface EMG measures of NE and RFD, es-
tablishing our fourth model. Therefore, the models tested in the present
study were linear, bilinear, log-log transformation, and exponential.

The referent model (model 1) is a strict linear relationship, which is
defined as:

= +y ax b

where ‘a’ is the slope of the line, ‘x’ is the peak RFD, and ‘b’ is the y-
intercept.

Model 2 is based on a strict bilinear relationship and is defined as:

= ⎧
⎨⎩

+ ≤
+ >

y
a a x if x x
b b x if x x

0 1 0

0 1 0

where

= −
−

x a b
a b0

0 0

1 1

where ‘y’ represents the estimated peak rate of NE, ‘x’ represents the
peak rate of force development, ‘a0′ represents a constant of the first
linear relationship, ‘a1′ represents the slope of the first linear relation-
ship, ‘b0′ represents a constant of the second linear relationship, ‘b1′
represents the slope of the second linear relationship, and x0 is the
change point where the two relationships intersect.

Model 3 is a bilinear fit following a log-log transformation. For this
model, the log values were found for both peak RFD and peak RER prior
to fitting it into the same bilinear relationship listed above.

Model 4 is based on an exponential relationship. This relationship is
defined as:

= +y ae cbx( )

where ‘y’ represents the estimated peak rate of neuromuscular activa-
tion, ‘x’ represents the peak rate of force development, ‘a’ is the y-
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intercept, ‘b’ is the growth factor, and ‘c’ is a constant.

2.6. Data analysis

The data from each participant was fitted with each model, using a
custom LabVIEW program (National Instruments, Austin, TX) to adjust
model parameters until the mean squared error (MSE) was minimized.
The corrected Akaike Information Criterion (AICc, explained below)
was computed for each model. According to information theory, the
model with the lowest AICc is most likely to be the best model. The
Akaike Information Criterion accounts for models with more adjustable
parameters tending to have lower mean squared error, even when not
the best model (Akaike, 1973; Katsanevakis, 2006). The formula for AIC
is

= + + + πAIC nlog(MSE) 2K n(1 log(2 ))

where n is the number of data points and K is the number of fitted
parameters. Note that K should include one extra parameter for the
hidden estimate of residual variance (Burnham et al., 2002), and
therefore K=3 for the linear model, K= 5 for the bilinear and log–log

models, and K=4 for the exponential model. The formula for AICc
(which is AIC corrected for small sample size (Akaike, 1973; Shono,
2000) is:

= + + − −AICc AIC 2K(K 1)/(n K 1)

When the sample size, n, is large, AICc approaches AIC.
The normalized model likelihood (Akaike weight, wi) is the prob-

ability that model i is the best model, among the considered models
(Burnham et al., 2002; Wagenmakers and Farrell, 2004). Akaike
weight, is calculated as:

=
−

∑ −=

w
exp( 0.5Δ )

exp( 0.5Δ )
i

i

k k1
4

where Δi is the difference between AICc for model i and AICc for the
best model for that set of data:

= −AICc AICcΔi i best

Fig. 1. A sample force-trace for the ramp force-matching condition (top) and graphs showing details of data analysis (middle and bottom). The top graph contains a
static plot of the 40 %MVC/s ramp condition (black line) and the force produced for the entire trial by the participant (gray line). The middle graph is isolates a single
ramp between from the top graph with the addition of the dF/dt (RFD, dotted line). The bottom graph is the rectified (gray line), smoothed (black line), and dEMG/dt
(RER, dotted line) EMG from the same ramp.
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3. Results

The mean dorsiflexion strength was 34.04 ± 7.30 N-m. During the
rapid contractions, the peak RFD observed ranged from 287 to 623 %
MVC/s with a mean peak RFD of 446 %MVC/s. The mean absolute peak
RFD was 149 ± 34.2 N-m/s.

For aggregate data, an exponential line of best fit had the lowest
AICc (16,015) and wi = 91.2%. Considering the potential for aggregate
data to hide individual differences in best fit, model testing was per-
formed on an individual level, an approach consistent with the in-
dividual computation of blood lactate curves (Hughson et al., 1987) and
serves an interest in computing bilinear regression parameters such as
the change point for individual research participants.

Table 1 shows mean squared error (MSE), corrected AIC (AICc),
AICc difference (Δ), and relative model likelihood (w, in percent) for
the four models, for participant 1, to illustrate their computation and
relationships. In this participant, the bilinear model has the lowest
AICc, and therefore has the greatest likelihood of being the best model.
The AICc difference, Δ, is zero for the model with the lowest/best AICc.
The relative likelihoods of the four models add up to 100% (Fig. 2).

Table 2 shows the AICc differences (Δ) and the model likelihoods
(w) for each participant. The data in Table 2 indicate that a linear fit
was best in five of the twenty-one participants while a non-linear fit was
best in the remaining sixteen. A chi square test indicated a significant
(Χ2=5.76, p= 0.01) departure from an equal distribution across
linear and nonlinear models. More specifically, linear model was the
strongest for five participants and had a better-than-5% chance of being
the best model in two other participants. The bilinear model was the
strongest fit for thirteen participants and had a better-than-5% chance
of being the best model for the remaining eight participants. Log-log
transformation was the strongest fit for no participants and had a
better-than-5% chance of being the best model in one participant. Ex-
ponential was the strongest fit for three participants and had a better-
than-5% chance of being the best model in twelve additional partici-
pants.

Each bilinear fit has a change point: X-coordinate separating the
primary range from the secondary range. Table 3 provides the primary
slope, change point, and secondary slope for each participant in whom
the bilinear model was most likely along with the coefficient of varia-
tion for each parameter. The mean primary range slope was 0.51, the
mean secondary range slope was 3.21, and the mean peak RFD where
NE changed from primary to secondary range was 204 %MVC/s. The
change point exhibited the least coefficient of variation.

4. Discussion

This study sought to add to the current understanding of the rate of
neural excitation (EMG rate of rise, RER) throughout a wide range of
isometric contraction rates. The aim was to determine whether there is
support for a bilinear model of the NE-RFD relationship, considering the
known bilinearity in MU discharge behavior (Baldissera et al., 1998;
Harwood et al., 2011; Kernell, 1965b) and the nonlinear summation of
MU potentials in the electromyogram as larger MUs are recruited
(Masakado et al., 1994). Although we borrow the terms primary range
and secondary range from studies that observed bilinearity in MU firing

rates, we do not suggest the observed bilinearity in the surface elec-
tromyogram is due specifically to this MU control mechanism.

The AICc provided objective support for the bilinear model com-
pared to linear, log-log, and exponential alternatives. While non-
linearity was not the best fit model in all participants, that 76% of the
participants demonstrated a nonlinear best fit and all participants had a
better-than-5% chance specifically for bilinearity supports the appli-
cation of this model to the study of NE across increasing rates of force
development. Bilinear model parameters from the 13 best-fit partici-
pants provided slopes of the primary and secondary excitation ranges

Table 1
Detailed model comparison in participant 1. Mean square error (MSE), cor-
rected AIC (AICc), AICc difference (Δ), and normalized model likelihood (w) for
each model. n= 42 data points for this participant.

Quantity Linear Bilinear Log-Log Expon.

M.S.E. 21,369 11,011 199,270 13,272
AICc 544.5 521.7 643.4 527.0
Δ 22.8 0.0 121.6 5.3
w 0% 93% 0% 7%

Fig. 2. Linear (top), bilinear (middle), and exponential (bottom) fit for parti-
cipant 1. AICc, AICc delta, and Akaike weight of each fit are listed on each
figure. AICc delta is the difference between the AICc of that particular model
and the lowest AICc observed among the three. Akaike weight is the likelihood
(percent) of a particular model being the best fit for that dataset.
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and a change point. Among these three values the change point
(203.9 ± 73.8 %MVC/s, coefficient of variation (CV)= 36%) had the
least variance across participants followed by the secondary range slope
(3.21 ± 1.99, CV=62%). The slope of the relationship between RER
and RFD in the primary range was the most variable (0.512 ± 0.788,
CV=154%).

While recognizing the limitations of surface electromyography to
determine underlying MU activity, one can still consider the possible
contributions of rate coding and recruitment to the observed bilinearity
in EMG rate of rise. Specifically, one would expect a bilinear or ex-
ponential increase in EMG as greater rates of descending excitation
elicit secondary range firing rates (Baldissera et al., 1998; Harwood
et al., 2011) and/or recruit larger, high threshold motor units with
larger electrophysiological potentials (Masakado et al., 1994; Stalberg,
1980). The main challenge to this expectation is the influence of am-
plitude cancellation (Keenan et al., 2005) in which the electromyogram

is increasingly attenuated at greater levels of excitation due to the
summation of negative and positive phases of MU action potentials.
Since the effect of amplitude cancellation is more pronounced at greater
levels of excitation, the present findings of bilinearity in the relation-
ship between EMG rate of rise and RFD might be considered a possible
underestimation of its true nature.

Determining why most, but not all, individuals had a nonlinear
RFD-NE relationship requires further consideration. Exploratory ana-
lysis comparing linear to non-linear subsets of participants was per-
formed for sex, grip-strength normalized-to-body mass, dorsiflexion
MVC normalized-to-body mass, BMI, body mass, and participation of
high intensity activity in the previous year. Due to the small sample size
(N= 21), Fisher’s Exact Test was used for the influence of sex and
activity. Independent t-tests comparing linear and non-linear groups
were used for BMI, body mass, normalized TA-MVC, and normalized
handgrip. The Fisher’s Exact test revealed no differences in best fit by
sex (p=0.635) or regular participation in high intensity activity
(p= 0.611). No differences in BMI (t= 0.853, p=0.440), body mass
(t= 1.068, p= 0.342), dorsiflexion MVC normalized to body mass
(t= 0.737, p=0.470), or normalized handgrip strength (t= -0.424,
p=0.677) existed.

As no significant differences of best-fit based on demographics or
descriptive information arose, other options should be considered. One
must not only consider possible differences in MU morphology, rate
coding, and recruitment, but also the possibility of individual differ-
ences in factors that contribute to amplitude cancellation (Keenan et al.,
2005). Another possible explanation for the mixed observations of
nonlinearity across participants is heterogeneous compliance of the
muscle tendon (M–T) unit. As reviewed by Maffiuletti et al., the rate of
force transmission through tissue is partly determined by its stiffness
and tendon stiffness in the lower extremity is known to be highly
variable across individuals (Maffiuletti et al., 2016). Some of the ear-
liest published work on this topic considered the manner in which pairs
of electrical stimuli with brief intervals interact with tissue compliance
(e.g. Hill, 1949) and perhaps individuals with greater M–T unit stiffness
might depend less on secondary range MU firing rates during rapid
contractions from rest, compared to individuals with less M–T stiffness.

While extrapolation of specific MU control mechanisms from the
surface electromyogram is not recommended (Farina et al., 2014) this
observation of nonlinearity in the EMG-RFD relationship is consistent
with expectations based on known nonlinearities in both MU rate
coding and the summation of progressively larger electrical potentials
from higher threshold MUs. However, bilinearity was observed in the
MU firing rates of a study examining dynamic elbow extension across
multiple angular velocities, but not in surface EMG measures (Harwood
et al., 2011). Although one could suggest that differences in the EMG
measures used might explain this discrepancy, the isometric equivalent
of the measure used by Harwood et al. (RMS amplitude from EMG onset
to peak RFD), has a similarly strong correlation with RFD as the rate of
EMG rise measure used here (Josephson and Knight, 2018). One could
also suggest that surface EMG is more sensitive to recruitment than
firing rate (Harwood et al., 2011) but such speculation seems to be
based on publications that used slower 10 %MVC/s ramp conditions
which are less likely to elicit secondary range firing rates (Christie et al.,
2009). It is possible that the present study had greater sensitivity to
detect bilinearity due to a greater number of observations used in model
fitting at the level of the individual.

Different models have demonstrated the necessity of rapid initial
MU firing rates to accomplish rapid contractions (Baldissera et al.,
1998; Del Vecchio et al., 2019; Desmedt and Godaux, 1977; Heller,
2010) and found a lower RFD, decreased force, and a force lag when
high initial MU firing rates are removed. Considering the importance of
RFD in mobility (Bento et al., 2010) and its responsiveness to exercise
training (Aagaard et al., 2002), knowledge of an EMG-RFD (or EMG-
movement velocity) change point may be informative in the practice of
neuromuscular rehabilitation. Variance in the location of the change

Table 2
Model comparison in all participants. Table shows AICc difference (Δ) and
normalized model likelihood (w, in percent) for each model in each participant.
Bold indicates most likely model for each participant, among the tested models.

Participant Linear Bilinear Log-Log Expon.

Δ w Δ w Δ w Δ w

1 22.8 0% 0.0 93% 121.6 0% 5.3 7%
2 6.4 2% 0.0 55% 1.2 30% 2.8 13%
3 10.8 0% 0.0 78% 136.3 0% 2.5 22%
4 10.7 0% 0.0 97% 93.7 0% 7.7 2%
5 30.4 0% 2.6 22% 106.4 0% 0.0 78%
6 0.0 78% 4.0 10% 110.8 0% 3.9 11%
7 5.5 5% 0.0 80% 126.0 0% 3.3 15%
8 6.9 2% 0.4 44% 113.8 0% 0.0 55%
9 8.5 1% 0.0 98% 129.7 0% 10.7 0%
10 4.3 8% 0.0 71% 120.2 0% 2.4 21%
11 14.2 0% 0.0 96% 176.0 0% 6.4 4%
12 0.0 61% 3.7 10% 69.5 0% 1.5 29%
13 0.0 64% 1.1 36% 169.5 0% 17.3 0%
14 5.7 3% 0.0 57% 116.3 0% 0.7 40%
15 0.5 30% 0.3 33% 72.4 0% 0.0 38%
16 0.0 49% 1.1 29% 131.6 0% 1.6 22%
17 21.2 0% 0.0 86% 162.4 0% 3.7 14%
18 0.0 71% 4.4 8% 67.9 0% 2.4 21%
19 22.3 0% 0.0 98% 132.1 0% 7.4 2%
20 5.6 5% 0.0 81% 132.8 0% 3.5 14%
21 16.2 0% 0.0 100% 174.2 0% 10.9 0%

Table 3
Bilinear fit results. Primary range slope, change point, and secondary range
slope, in each participant for whom the bilinear model was most likely. A paired
t-test revealed a significant difference between the primary and secondary
slopes (t= –6.67, p < 0.001).

Subject ID Primary Range
Slope

Change Point
(RFD%MVC)

Secondary Range
Slope

1 0.499 285.1 3.624
2 0.196 162.1 0.894
3 0.737 232.0 2.941
4 −0.174 154.0 1.954
7 −0.795 154.7 1.858
9 −0.186 120.5 1.793
10 0.102 126.3 1.796
11 1.334 256.7 6.024
14 1.249 222.0 3.986
17 0.675 181.8 2.063
19 1.611 367.3 7.994
20 1.692 256.8 4.386
21 −0.279 131.9 2.459
Mean 0.512 203.9 3.213
Standard Deviation 0.788 73.8 1.994
Coefficient of Variation

(%)
154 36 62

M.D. Josephson, et al. Journal of Electromyography and Kinesiology 49 (2019) 102355

5



point in our participants suggests that there may be an individual-
specific threshold above which the nonlinearities in recruitment or rate
coding are expressed. In addition to differences in M–T stiffness dis-
cussed above, it might be the case with humans in vivo that the change
point will also be influenced by muscle fiber length and contractile
velocity. The observed variance in the change point supports the value
of examining bilinearity in individual participant data rather than in
group data.

As hypothesized, objective quantitative methods provided the
greatest support for a bilinear model of the EMG-RFD relationship,
despite the known effects of amplitude cancellation which would make
such a finding less likely. We consider this finding to be preliminary and
one that requires replication as it has not been observed in other related
experiments (Harwood et al., 2011) and the results may be dependent
on details of experimental design. Two known limitations should be
addressed in future studies. First, experimental conditions that produce
more data points in the range of the change point may enhance re-
solution. Second, extending the RFD conditions further into the sec-
ondary range by performing force pulses to greater amplitudes would
make quantification of the EMG-RFD relationship more complete. De-
spite the limitations of surface electromyography, a more complete
understanding of the relationship between rates of neuromuscular ac-
tivation and rate of force development will improve our understanding
of the neural control of rapid movement in health and disease.
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