
Abstract  1 

The purpose was to examine the relationship between the rate of neural excitation (rate of rise in the 2 

electromyogram, EMG) and the rate of isometric force development (RFD) to determine whether 3 

surface EMG measures can detect nonlinearity that is expected due to underlying motor unit discharge 4 

behavior and the summation of progressively larger motor unit potentials throughout recruitment. Due 5 

to interest in obtaining a change point, a bilinear model was hypothesized to provide the best fit of the 6 

EMG-RFD relationship compared to a linear model, exponential model and bilinear fit to log-7 

transformed data. 21 young adult participants performed isometric dorsiflexion contractions to 40% of 8 

their maximal voluntary contraction (MVC) force.  Contractions were performed in RFD conditions 9 

ranging from slow (20 %MVC/s) to fast (peak volitional rate). The Akaike Information Criterion 10 

supported nonlinear models in 16 of the 21 participants with the greatest overall support for the bilinear 11 

model (n=13). The bilinear models indicated a mean change point at 204 %MVC/s. The present data do 12 

not identify the specific motor unit control mechanisms at play and the influence of amplitude 13 

cancellation on the electromyogram must be carefully considered. 14 

 15 

 16 
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 22 

 23 

 24 



Bilinear 
 

2   
 

 1. Introduction 25 

 Examining the relationship between neuromuscular excitation (NE) and force production 26 

provides a means to study topics such as impaired motor control (Chou et al., 2013; Jahanmiri-Nezhad et 27 

al., 2014; Ng et al., 1997), the effects of exercise training (Van Cutsem et al., 1998) and neuromuscular 28 

efficiency (Paquin and Power, 2018).  In some instances, physical function is predicted more strongly by 29 

the rate of force development (RFD) than the peak force achieved (Bento et al., 2010; Hazell et al., 30 

2007).  NE primarily determines RFD (Maffiuletti et al., 2016), and is quantifiable using 31 

electromyography (EMG).  EMG represents the electrical sum of active motor units (Robertson et al., 32 

2004) and is primarily determined by motor unit (MU) recruitment and rate coding mechanisms of force 33 

control (Kamen and Gabriel, 2010).  While one must not over-interpret measures from surface EMG with 34 

respect to MU behavior, some recognize that nonlinearities in the EMG-force relationship may reflect 35 

“different motor unit pool activation strategies” and have demonstrated that parameters from a bilinear 36 

fit of the EMG-force relationship can be sensitive to experimental manipulations such as contraction 37 

history (Paquin and Power, 2018).   38 

 At the MU level, the relationship between the rate of increase in current applied to the 39 

motoneuron and RFD is linear (Baldissera and Campadelli, 1977).  This linearity is due to bilinear firing 40 

behavior of the alpha motor neuron offsetting the nonlinear input-output transform of muscle which 41 

mimics a low-pass filter (Baldissera et al., 1998; Partridge, 1965).  The bilinear relationship between 42 

input to the motor neuron and its response (i.e. firing rate) includes a primary range of firing rates 43 

typically observed during slow contractions and a secondary range of firing rates observed during rapid 44 

contractions or movements (e.g. Harwood, Davidson, & Rice, 2011; Kernell, 1965b). The two linear 45 

ranges intersect at a change point and the secondary range has a greater slope.  Feline studies have 46 

demonstrated that both rapid muscle contractions from rest and higher frequency sinusoidal force 47 

modulations depend on brief instances of secondary range MU discharge rates (Baldissera et al., 1998b) 48 
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and the bilinear relationship between movement velocity and MU firing rates has been successfully 49 

documented in humans (Harwood et al., 2011).   50 

  The dynamics of MU recruitment may also contribute to possible nonlinearity in the NE-EMG 51 

relationship since higher threshold MUs have greater electrophysiological sizes (Masakado et al., 1994) 52 

and are more likely to be recruited earlier in a contraction as RFD increases (J E Desmedt and Godaux, 53 

1977; Yoneda et al., 1986).  In slow muscle contractions, the greatest NE occurs close to peak force, 54 

whereas during fast muscle contractions the greatest NE occurs closer to force onset (Ricard et al., 55 

2005).  Thus, bilinearity in rate coding and the nonlinear summation of progressively larger MU action 56 

potentials are both considered as the basis of the present hypothesis that a bilinear relationship 57 

between neural excitation and RFD can be observed with surface EMG measures.  A more complete 58 

understanding of this relationship will benefit applications of electromyography to the study of 59 

neuromuscular function during rapid movements in health, pathology, and performance.   60 

  61 

2. Methods 62 

2.1 Participants 63 

 Twenty-one healthy young adults, ten females and eleven males, (mean + SD:  age=21.7 +2.7 64 

years, body mass = 73.6 + 20.2 kg, height=1.7 + 0.1 m, maximal grip strength = 39.5 + 10.2 kg) 65 

participated in this study. Nine participants self-reported as consistently participating in high-intensity 66 

physical activity for at least the previous six months.  All participants were university students and free 67 

of neurological impairment, lower body dysfunction, and recent (<6 months) lower extremity injuries.  68 

All participants signed a university approved informed consent before beginning the study.   69 

 70 

2.2 Procedures 71 
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EMG and isometric force recordings were obtained during a single testing session.  Participants 72 

were seated on a custom wooden bench with the left foot fastened with an inelastic strap to a plate 73 

affixed to a strain gauge force transducer (Model SM-100, Interface Force Inc., Scottsdale, AZ).  Force 74 

was amplified and low-pass filtered at 50Hz at the time of recording (Model SGA, Interface force Inc., 75 

Scottsdale, AZ).  The skin above the belly of the tibialis anterior muscle was shaved, abraded, and 76 

cleansed with ethyl alcohol.  A pre-amplified double differential surface electrode was secured to skin 77 

above the mid-belly region of the tibialis anterior muscle (MA-300, Motion Lab Systems, Baton Rouge, 78 

LA).  The surface electrodes were 12mm diameter medical grade stainless steel disks with a 17mm inter-79 

electrode distance.  A 13x3 mm reference bar separated the sensors and a ground electrode was placed 80 

on the lateral malleolus.  Amplification ranged from 2000 to 5700.  Input impedance for this system is 81 

>100 MΩ with a common mode rejection ratio >100 dB at 65Hz and noise <1.2uV RMS.  Signals were 82 

digitized at 2kHz with 24-bit resolution (cDAQ-9178, module NI9239, National Instruments, Austin TX).  83 

DASYLab v.13 (National Instruments, Austin, TX) was used to control data acquisition and to provide 84 

real-time force biofeedback.   85 

    86 

2.3 Experimental Conditions 87 

Participants performed three maximum voluntary isometric contractions (MVCs) with the 88 

maximum force achieved used to present relative force levels (%MVC) in visual feedback.  Participants 89 

were asked to produce force to match static plots of different linear ramp force-time curves (figure 1).  90 

There were five different ramp force RFD conditions (20 %MVC/s, 40 %MVC/s, 80 %MVC/s, 160 91 

%MVC/s, and 200 %MVC/s) and one condition of rapid force pulses.  All conditions were performed to 92 

40 %MVC.  Each condition was practiced and performed for multiple trials.   Each ramp force within a 93 

trial was separated by 2 seconds and rapid pulses by 1 second.   Each trial contained six ramps with one 94 

minute of rest between recordings.  With feedback based on visual inspection by the investigator, 95 
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participants practiced each RFD ramp condition until five ramps of adequate performance were 96 

obtained.  To reduce order effects, the ramp conditions were counterbalanced across participants 97 

followed by two trials of rapid force pulses.  After the conservative exclusion of contractions that 98 

exhibited poor performance (typically excessive RFD at the onset of a ramp, large corrections during a 99 

ramp, or poor amplitude control in pulses) an average of 57 contractions were analyzed in each 100 

individual.  101 

 102 

 103 

Figure 1. A sample force-trace for the ramp force-matching condition (top) and graphs showing details 104 

of data analysis (middle and bottom).  The top graph contains a static plot of the 40 %MVC/s ramp 105 

condition (black line) and the force produced for the entire trial by the participant (gray line).  The 106 

middle graph is isolates a single ramp between from the top graph with the addition of the dF/dt (RFD, 107 

dotted line).  The bottom graph is the rectified (gray line), smoothed (black line), and dEMG/dt (RER, 108 

dotted line) EMG from the same ramp    109 

 110 
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2.4 Signal processing  111 

 Force and EMG data were processed using LabVIEW v. 2014 (National Instruments, Austin, TX).  112 

All values derived from the force-time curve were normalized to MVC force.  An RFD time series was 113 

calculated from the force-time curve as the slope from a linear fit line of all data points within a .1s 114 

moving window (+ .05s around each data point).  After adjusting for gain, removing DC offset, and 115 

bandpass filtering between 10-990Hz, the EMG was absolute value rectified.  Based on recent work 116 

involving EMG and rapid contractions, peak rate of EMG rise (RER) was selected to quantify NE because 117 

it had the greatest correlation with RFD among measures that do not require the determination of EMG 118 

onset, which would have been impractical and highly variable in the slowest RFD conditions (Josephson 119 

and Knight, 2018).  Using the same .1s window size as RFD computation, RER was calculated as the slope 120 

of the rectified, filtered (zero-lag 4th order low-pass Butterworth, 20Hz cutoff) electromyogram.  The 121 

EMG recordings were normalized to the RMS amplitude of EMG in the maximal MVC trial (+ .250s 122 

window surrounding MVC) which was filtered similarly.   123 

 124 

2.5 Model Selection 125 

 Based on the evidence of bilinearity in neuromuscular function cited above and with interest in 126 

observing a potential change point, a strict bilinear model of the data was our primary model of interest.  127 

Two other models were tested using guidance from research on blood lactate concentration curves. 128 

Beaver, Wasserman, and Whipp (1985) determined that the best bilinear fit for this relationship is 129 

achieved with a log-log transformation.  Later researchers suggested that exponential model was most 130 

representative of the underlying physiology (Hughson et al., 1987).  A linear relationship between 131 

surface EMG measures of NE and RFD, establishing our fourth model.  Therefore, the models tested in 132 

the present study were linear, bilinear, log-log transformation, and exponential.   133 

 134 
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The referent model (model 1) is a strict linear relationship, which is defined as: 135 

 136 

𝑦 = 𝑎𝑥 + 𝑏 137 

 138 

where ‘a’ is the slope of the line, ‘x’ is the peak RFD, and ‘b’ is the y-intercept. 139 

 140 

Model 2 is based on a strict bilinear relationship and is defined as: 141 

 142 

𝑦 = {
𝑎0 + 𝑎1𝑥 𝑖𝑓 𝑥 ≤ 𝑥0

𝑏0 + 𝑏1𝑥 𝑖𝑓 𝑥 > 𝑥0
 143 

where 144 

𝑥0 =
𝑎0 − 𝑏0

𝑎1 − 𝑏1
 145 

 146 

where ‘y’ represents the estimated peak rate of NE, ‘x’ represents the peak rate of force development, 147 

‘a0’ represents a constant of the first linear relationship, ‘a1’ represents the slope of the first linear 148 

relationship, ‘b0’ represents a constant of the second linear relationship, ‘b1’ represents the slope of the 149 

second linear relationship, and x0 is the change point where the two relationships intersect.  150 

 151 

Model 3 is a bilinear fit following a log-log transformation.  For this model, the log values were found for 152 

both peak RFD and peak RER prior to fitting it into the same bilinear relationship listed above.  153 

 154 

Model 4 is based on an exponential relationship.  This relationship is defined as: 155 

 156 

𝑦 = 𝑎𝑒(𝑏𝑥) + 𝑐 157 
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 158 

where ‘y’ represents the estimated peak rate of neuromuscular activation, ‘x’ represents the peak rate 159 

of force development, ‘a’ is the y-intercept, ‘b’ is the growth factor, and ‘c’ is a constant. 160 

 161 

2.6 Data analysis 162 

 The data from each participant was fitted with each model, using a custom LabVIEW program 163 

(National Instruments, Austin, TX) to adjust model parameters until the mean squared error (MSE) was 164 

minimized.  The corrected Akaike Information Criterion (AICc, explained below) was computed for each 165 

model.  According to information theory, the model with the lowest AICc is most likely to be the best 166 

model.  The Akaike Information Criterion accounts for models with more adjustable parameters tending 167 

to have lower mean squared error, even when not the best model (Akaike, 1973; Katsanevakis, 2006).    168 

The formula for AIC is 169 

AIC = nlog(MSE) + 2K + n(1 + log(2𝜋)) 170 

where n is the number of data points and K is the number of fitted parameters.  Note that K should 171 

include one extra parameter for the hidden estimate of residual variance (Burnham & Anderson, 2002), 172 

and therefore K=3 for the linear model, K=5 for the bilinear and log-log models, and K=4 for the 173 

exponential model. The formula for AICc (which is AIC corrected for small sample size (Akaike, 1973; 174 

Shono, 2000)) is: 175 

AICc = AIC + 2K(K + 1)/(n − K − 1) 176 

When the sample size, n, is large, AICc approaches AIC. 177 

 The normalized model likelihood  (Akaike weight, wi) is the probability that model i is the best 178 

model, among  the considered models (Burnham et al., 2002; Wagenmakers and Farrell, 2004).   Akaike 179 

weight, is calculated as: 180 

𝑤𝑖 =
exp(−0.5∆𝑖)

∑ exp(−0.5∆𝑘)4
𝑘=1

 181 



Bilinear 
 

9   
 

where Δi is the difference between AICc for model i and AICc for the best model for that set of data: 182 

Δ𝑖 = 𝐴𝐼𝐶𝑐𝑖 − 𝐴𝐼𝐶𝑐𝑏𝑒𝑠𝑡 183 

 184 

3. Results 185 

 The mean dorsiflexion strength was 34.04 + 7.30 N-m.  During the rapid contractions, the peak 186 

RFD observed ranged from 287 to 623 %MVC/s with a mean peak RFD of 446 %MVC/s. The mean 187 

absolute peak RFD was 149 ±34.2 N-m/s. 188 

 For aggregate data, an exponential line of best fit had the lowest AICc (16015) and wi =91.2%.  189 

Considering the potential for aggregate data to hide individual differences in best fit, model testing was 190 

performed on an individual level, an approach consistent with the individual computation of blood 191 

lactate curves (Hughson et al., 1987) and serves an interest in computing bilinear regression parameters 192 

such as the change point for individual research participants. 193 

Table 1 shows mean squared error (MSE), corrected AIC (AICc), AICc difference (), and relative 194 

model likelihood (w, in percent) for the four models, for participant 1, to illustrate their computation 195 

and relationships.  In this participant, the bilinear model has the lowest AICc, and therefore has the 196 

greatest likelihood of being the best model.  The AICc difference, , is zero for the model with the 197 

lowest/best AICc.  The relative likelihoods of the four models add up to 100% (figure 2). 198 

 199 

Table 1.  Detailed model comparison in participant 1. Mean square error (MSE), corrected AIC (AICc), 200 

AICc difference (), and normalized model likelihood (w) for each model.  n=42 data points for this 201 
participant.  202 

Quantity Linear Bilinear Log-Log Expon. 

M.S.E. 21369 11011 199270 13272 

AICc 544.5 521.7 643.4 527.0 

 22.8 0.0 121.6 5.3 

w 0% 93% 0% 7% 

 203 

 204 
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 205 

 206 

Figure 2. Linear (top), bilinear (middle), and exponential (bottom) fit for participant 1. AICc, AICc delta, 207 

and Akaike weight of each fit are listed on each figure.  AICc delta is the difference between the AICc of 208 

that particular model and the lowest AICc observed among the three.  Akaike weight is the likelihood 209 

(percent) of a particular model being the best fit for that dataset.  210 

 211 
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 212 

Table 2 shows the AICc differences () and the model likelihoods (w) for each participant.  The 213 

data in Table 2 indicate that a linear fit was best in five of the twenty-one participants while a non-linear 214 

fit was best in the remaining sixteen.  A chi square test indicated a significant (Χ2=5.76, p=0.01) 215 

departure from an equal distribution across linear and nonlinear models.  More specifically, linear model 216 

was the strongest for five participants and had a better-than-5% chance of being the best model in two 217 

other participants.  The bilinear model was the strongest fit for thirteen participants and had a better-218 

than-5% chance of being the best model for the remaining eight participants. Log-log transformation 219 

was the strongest fit for no participants and had a better-than-5% chance of being the best model in one 220 

participant. Exponential was the strongest fit for three participants and had a better-than-5% chance of 221 

being the best model in twelve additional participants.    222 

Each bilinear fit has a change point: X-coordinate separating the primary range from the 223 

secondary range.  Table 3 provides the primary slope, change point, and secondary slope for each 224 

participant in whom the bilinear model was most likely along with the coefficient of variation for each 225 

parameter. The mean primary range slope was 0.51, the mean secondary range slope was 3.21, and the 226 

mean peak RFD where NE changed from primary to secondary range was 204 %MVC/s.  The change 227 

point exhibited the least coefficient of variation.   228 

 229 

 230 

 231 

 232 

 233 

 234 

 235 
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Table 2. Model comparison in all participants. Table shows AICc difference  () and normalized model 236 

likelihood (w, in percent)  for each model in each participant.  Bold indicates most likely model for each 237 

participant, among the tested models. 238 

Participant 

Linear Bilinear Log-Log Expon. 

 w  w  w  w 

1 22.8 0% 0.0 93% 121.6 0% 5.3 7% 

2 6.4 2% 0.0 55% 1.2 30% 2.8 13% 

3 10.8 0% 0.0 78% 136.3 0% 2.5 22% 

4 10.7 0% 0.0 97% 93.7 0% 7.7 2% 

5 30.4 0% 2.6 22% 106.4 0% 0.0 78% 

6 0.0 78% 4.0 10% 110.8 0% 3.9 11% 

7 5.5 5% 0.0 80% 126.0 0% 3.3 15% 

8 6.9 2% 0.4 44% 113.8 0% 0.0 55% 

9 8.5 1% 0.0 98% 129.7 0% 10.7 0% 

10 4.3 8% 0.0 71% 120.2 0% 2.4 21% 

11 14.2 0% 0.0 96% 176.0 0% 6.4 4% 

12 0.0 61% 3.7 10% 69.5 0% 1.5 29% 

13 0.0 64% 1.1 36% 169.5 0% 17.3 0% 

14 5.7 3% 0.0 57% 116.3 0% 0.7 40% 

15 0.5 30% 0.3 33% 72.4 0% 0.0 38% 

16 0.0 49% 1.1 29% 131.6 0% 1.6 22% 

17 21.2 0% 0.0 86% 162.4 0% 3.7 14% 

18 0.0 71% 4.4 8% 67.9 0% 2.4 21% 

19 22.3 0% 0.0 98% 132.1 0% 7.4 2% 

20 5.6 5% 0.0 81% 132.8 0% 3.5 14% 

21 16.2 0% 0.0 100% 174.2 0% 10.9 0% 

 239 

4. Discussion 240 

This study sought to add to the current understanding of the rate of neural excitation (EMG rate 241 

of rise, RER) throughout a wide range of isometric contraction rates.  The aim was to determine whether 242 

there is support for a bilinear model of the NE-RFD relationship, considering the known bilinearity in MU 243 

discharge behavior (Baldissera et al., 1998; Harwood et al., 2011; Kernell, 1965b) and the nonlinear 244 

summation of MU potentials in the electromyogram as larger MUs are recruited (Masakado et al., 245 

1994).  Although we borrow the terms primary range and secondary range from studies that observed 246 
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bilinearity in MU firing rates, we do not suggest the observed bilinearity in the surface electromyogram 247 

is due specifically to this MU control mechanism. 248 

Table 3. Bilinear fit results. Primary range slope, change point, and secondary range slope, in each 249 

participant for whom the bilinear model was most likely.  A paired t-test revealed a significant difference 250 

between the primary and secondary slopes (t=-6.67, p<0.001). 251 

Subject ID Primary Range 
Slope 

Change Point 
(RFD%MVC) 

Secondary Range 
Slope 

1 0.499 285.1 3.624 

2 0.196 162.1 0.894 

3 0.737 232.0 2.941 

4 -0.174 154.0 1.954 

7 -0.795 154.7 1.858 

9 -0.186 120.5 1.793 

10 0.102 126.3 1.796 

11 1.334 256.7 6.024 

14 1.249 222.0 3.986 

17 0.675 181.8 2.063 

19 1.611 367.3 7.994 

20 1.692 256.8 4.386 

21 -0.279 131.9 2.459 

Mean 0.512 203.9 3.213 

Standard Deviation  0.788 73.8 1.994 

Coefficient of 
Variation (%) 

154 36 62 

 252 

 253 

The AICc provided objective support for the bilinear model compared to linear, log-log, and 254 

exponential alternatives.  While nonlinearity was not the best fit model in all participants, that 76% of 255 

the participants demonstrated a nonlinear best fit and all participants had a better-than-5% chance 256 

specifically for bilinearity supports the application of this model to the study of NE across increasing 257 

rates of force development.  Bilinear model parameters from the 13 best-fit participants provided slopes 258 

of the primary and secondary excitation ranges and a change point.  Among these three values the 259 

change point (203.9 ± 73.8 %MVC/s, coefficient of variation (CV)=36%) had the least variance across 260 
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participants followed by the secondary range slope (3.21 ± 1.99, CV=62%).  The slope of the relationship 261 

between RER and RFD in the primary range was the most variable (.512 ± .788, CV=154%). 262 

While recognizing the limitations of surface electromyography to determine underlying MU 263 

activity, one can still consider the possible contributions of rate coding and recruitment to the observed 264 

bilinearity in EMG rate of rise.  Specifically, one would expect a bilinear or exponential increase in EMG 265 

as greater rates of descending excitation elicit secondary range firing rates (Baldissera et al., 1998; 266 

Harwood et al., 2011) and/or recruit larger, high threshold motor units with larger electrophysiological 267 

potentials (Masakado et al., 1994; Stalberg, 1980).  The main challenge to this expectation is the 268 

influence of amplitude cancellation (Keenan et al., 2005) in which the electromyogram is increasingly 269 

attenuated at greater levels of excitation due to the summation of negative and positive phases of MU 270 

action potentials. Since the effect of amplitude cancellation is more pronounced at greater levels of 271 

excitation, the present findings of bilinearity in the relationship between EMG rate of rise and RFD might 272 

be considered a possible underestimation of its true nature. 273 

 Determining why most, but not all, individuals had a nonlinear RFD-NE relationship requires 274 

further consideration. Exploratory analysis comparing linear to non-linear subsets of participants was 275 

performed for sex, grip-strength normalized-to-body mass, dorsiflexion MVC normalized-to-body mass, 276 

BMI, body mass, and participation of high intensity activity in the previous year.  Due to the small 277 

sample size (N=21), Fisher’s Exact Test was used for the influence of sex and activity.  Independent t-278 

tests comparing linear and non-linear groups were used for BMI, body mass, normalized TA-MVC, and 279 

normalized handgrip.  The Fisher’s Exact test revealed no differences in best fit by sex (p=0.635) or 280 

regular participation in high intensity activity (p=0.611).  No differences in BMI (t=0.853, p=0.440), body 281 

mass (t=1.068, p=0.342), dorsiflexion MVC normalized to body mass (t=0.737, p=0.470), or normalized 282 

handgrip strength (t=-0.424, p=0.677) existed.   283 
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 As no significant differences of best-fit based on demographics or descriptive information arose, 284 

other options should be considered.  One must not only consider possible differences in MU 285 

morphology, rate coding, and recruitment, but also the possibility of individual differences in factors 286 

that contribute to amplitude cancellation (Keenan et al., 2005).  Another possible explanation for the 287 

mixed observations of nonlinearity across participants is heterogeneous compliance of the muscle 288 

tendon (M-T) unit.  As reviewed by Maffiuletti et al., the rate of force transmission through tissue is 289 

partly determined by its stiffness and tendon stiffness in the lower extremity is known to be highly 290 

variable across individuals (Maffiuletti et al., 2016).  Some of the earliest published work on this topic 291 

considered the manner in which pairs of electrical stimuli with brief intervals interact with tissue 292 

compliance (e.g. Hill, 1949) and perhaps individuals with greater M-T unit stiffness might depend less on 293 

secondary range MU firing rates during rapid contractions from rest, compared to individuals with less 294 

M-T stiffness. 295 

 While extrapolation of specific MU control mechanisms from the surface electromyogram is not 296 

recommended (Farina et al., 2014) this observation of nonlinearity in the EMG-RFD relationship is 297 

consistent with expectations based on known nonlinearities in both MU rate coding and the summation 298 

of progressively larger electrical potentials from higher threshold MUs.  However, bilinearity was 299 

observed in the MU firing rates of a study examining dynamic elbow extension across multiple angular 300 

velocities, but not in surface EMG measures (Harwood et al., 2011).  Although one could suggest that 301 

differences in the EMG measures used might explain this discrepancy, the isometric equivalent of the 302 

measure used by Harwood et al. (RMS amplitude from EMG onset to peak RFD), has a similarly strong 303 

correlation with RFD as the rate of EMG rise measure used here (Josephson and Knight, 2018).  One 304 

could also suggest that surface EMG is more sensitive to recruitment than firing rate (Harwood et al., 305 

2011) but such speculation seems to be based on publications that used slower 10 %MVC/s ramp 306 

conditions which are less likely to elicit secondary range firing rates (Christie et al., 2009).  It is possible 307 
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that the present study had greater sensitivity to detect bilinearity due to a greater number of 308 

observations used in model fitting at the level of the individual.  309 

 Different models have demonstrated the necessity of rapid initial MU firing rates to accomplish 310 

rapid contractions (Baldissera et al., 1998; Del Vecchio et al., 2019; John E Desmedt and Godaux, 1977; 311 

Heller, 2010) and found a lower RFD, decreased force, and a force lag when high initial MU firing rates 312 

are removed.  Considering the importance of RFD in mobility (Bento et al., 2010) and its responsiveness 313 

to exercise training (Aagaard et al., 2002), knowledge of an EMG-RFD (or EMG-movement velocity) 314 

change point may be informative in the practice of neuromuscular rehabilitation.  Variance in the 315 

location of the change point in our participants suggests that there may be an individual-specific 316 

threshold above which the nonlinearities in recruitment or rate coding are expressed. In addition to 317 

differences in M-T stiffness discussed above, it might be the case with humans in vivo that the change 318 

point will also be influenced by muscle fiber length and contractile velocity.  The observed variance in 319 

the change point supports the value of examining bilinearity in individual participant data rather than in 320 

group data.     321 

 As hypothesized, objective quantitative methods provided the greatest support for a bilinear 322 

model of the EMG-RFD relationship, despite the known effects of amplitude cancellation which would 323 

make such a finding less likely.  We consider this finding to be preliminary and one that requires 324 

replication as it has not been observed in other related experiments (Harwood et al., 2011) and the 325 

results may be dependent on details of experimental design.  Two known limitations should be 326 

addressed in future studies.  First, experimental conditions that produce more data points in the range 327 

of the change point may enhance resolution.  Second, extending the RFD conditions further into the 328 

secondary range by performing force pulses to greater amplitudes would make quantification of the 329 

EMG-RFD relationship more complete.  Despite the limitations of surface electromyography, a more 330 

complete understanding of the relationship between rates of neuromuscular activation and rate of force 331 
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development will improve our understanding of the neural control of rapid movement in health and 332 

disease.   333 

 334 
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